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Abstract In the standard prescriptions (Albrecht in Phys Lett 56B:127, 1975; Hasse
in J Math Phys 16:2005, 1975), nonlinear potentials were proposed to introduce a Her-
mitian potential operator into a Hamiltonian in order to consider quantized friction
at the Schrödinger wave-function level. However, this route to understanding quan-
tized friction is not unique. Thus, motivated by important sub-questions put forward
by Albrecht and Hasse in the works cited above on the proper choice of parameters
introduced in the proposed potentials, we investigate here the information-theoretic
aspect of friction using an exact stationary solution for a two-particle interacting
one-dimensional oscillator model atom. Specifically, we calculate the change in the
diagonal entropy with respect to the well-documented frictionless case, and analyze
its parameter-dependence.

Keywords Quantum friction · Entropy · Harmonic atom model

1 Motivation

Interest in the fundamentals of dissipative systems at the quantum level has remained
high since the early days of quantum mechanics. Quantum dynamics with dissipation
are clearly relevant to many processes in physics, chemistry, and biology. However,
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the question of how to modify the classical Lagrangian and Hamiltonian formalisms
and the corresponding quantization methods in order to include these aspects has
not been answered in a unique way. There are different approaches, which seem to
be [1] incompatible with each other. The main approaches are (i) the system-plus-
reservoir model, (ii) models based on explicitly time-dependent Hamiltonians, and
(iii) nonlinear Schrödinger equations.

For instance, recent theoretical attempts within time-dependent density-functional
theory (TD-DFT) provide explicit prescriptions for the mean-field potentials describ-
ing quantum dissipation via a Caldeira–Leggett bath of harmonic oscillators [2], or
via a potential term in the auxiliary time-dependent Schrödinger equation of TD-DFT,
which breaks time-reversal invariance so as to cool the sub-system [3]. While in the
bath-approach the time-derivative of the center-of-mass coordinate of the many-body
system plays a decisive role, in the other approaches this role is played by the time-
derivative of the probability density.

As we mentioned in item (iii) above, a standard [1,4,5] way to circumvent the
problem of finding classical Hamiltonians for dissipative systems, that can be canon-
ically [6,7] quantized, is to add a Hermitian friction operator directly to the Hamilton
operator. The construction of such a term requires a nonlinear potential, parametrized
[4,5] and dicussed for the single-particle, or single mode, case. Remarkably, even with
nonlinear potentials in the Schrödinger equation one can get [5] stationary solutions
for the wave function in a few realistic problems. One such example is the ground-
state solution [5] for a harmonic oscillator. There, according to Hasse, one gets in the
single-mode ( j) case

ψ j (x j , γ, c) =
(
ω̃

π

)1/4

ei ω̃ t/2 e−(ω̃+i c γ ) x2
j /2 (1)

where Hartree atomic units, h̄ = me = 1, are employed. In this equation γ character-
izes the strength of the nonlinear Hermitian potential [4,5] operator in the Schrödinger
equation, the damped frequency is ω̃ = ω

√
1 − (cγ /ω)2 instead of the unperturbed

value ω, and the crucial parameter c may be [4] a real constant, or a real function of
time. For instance, with c = 1/2 one gets the same [5] damped quantum frequency as
in the classical treatment.

Precisely, it is the explicit form of Eq. (1) for a single-degree of freedom, denoted
there by x j , which motivates our study of an information-theoretic measure in an
exactly solvable two-electron model atom with inter-particle interaction. Since that
model is (see, below) separable into independent normal modes by using normal
coordinates, it provides a remarkable possibility for further investigation into the
parameter-set behind such nonlinear extensions to Schrödinger equations. In such
a way we extend the earlier analysis of [4,5] for a single mode to the interacting,
correlated case. Atomic units will be used in the rest of the paper, as in Eq. (1) above.

2 Characterization of the entropy

We start with the exact ground-state solution to the time-independent Schrödinger
equation for the following [8,9] Hamiltonian
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dx2
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)
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ω2(x2

1 + x2
2 )− 1
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�ω2(x1 − x2)

2. (2)

Using the canonical transformation, x+ = (x1 + x2)/
√

2 and x− = (x1 − x2)/
√

2,
one gets

Ĥ0 =
[
−1

2

d2

dx2+
+ 1

2
ω2

1 x2+

]
+

[
−1

2

d2

dx2−
+ 1

2
ω2

2 x2−

]
, (3)

where ω1 = ω and ω2 = ω
√

1 − 2�. While � ∈ [0, 0.5] corresponds to repulsive
inter-particle interaction, in the attractive case one has� < 0. Due to the separation in
Eq. (3), the exact ground-state wave function�(x1, x2) becomes a product in canonical
variables

�0(x+, x−) = ψ0(x+) ψ0(x−)

=
(ω1

π

)1/4
exp

(
−1

2
ω1 x2+

) (ω2

π

)1/4
exp

(
−1

2
ω2 x2−

)
. (4)

We proceed [10,11] by calculating the reduced one-particle density matrix via the
above solution and from its diagonal elements the one-particle probability density.
Using Mehler’s decomposition [12] as well, this density is given by

n0(x, ω1, ω2) =
∞∑

m=0

P(0)m

[(
ω̄0

π

)1/4 1√
2mm!

]2 [
e− 1

2 ω̄0x2
Hm(

√
ω̄0x)

]2
. (5)

Here ω̄0 = √
ω1ω2, the frequency in Löwdin’s natural orbitals, and Pm(ξ0) = (1 −

ξ0)(ξ0)
m , with ξ0(�) = [

(
√
ω1 − √

ω2)/(
√
ω1 + √

ω2)
]2, are occupation numbers.

Based on the exact representation in Eq. (5), the diagonal [13,14] von Neumann
entropy, denoted in this case by S(ξ0), and used below as a useful reference, is given
by

S(ξ0) = − ln(1 − ξ0) − ξ0

1 − ξ0
ln ξ0. (6)

One can see that this entropy is zero (as always in an auxiliary, independent-particle
treatment ) only for a non-interacting system where � = 0. Besides, for correlated
systems (� �= 0), this measure of inseparable correlation is independent of the sign of
the inter-particle coupling, There is an interesting duality [10] encoded in the quadratic
dependence of ξ0 on

√
ω1 and

√
ω2. This duality means that to any allowed repulsive

coupling there exists a corresponding attractive one for which the calculated entropies
are equal. How such duality could change by going to the new situation, where cγ �= 0,
is a challenging question.

Now, we consider both of our canonical variables x+ and x−, behind the indepen-
dent normal modes. Notice that only the center-of-mass coordinate is considered, via
its time-derivative, in the framework of an independent-particle TD-DFT [2] model.
However, in order to consider the interplay of entanglement and the parameter set
(c, γ ) characterizing nonlinear potential constructions [4,5], we will allow similar
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changes in both normal modes. So, we will apply the same c and γ to normal modes
since they are tied, physically, to the original particle-coordinates x1 and x2. Thus, we
apply the stationary form given above in Eq. (1) to extend our ψ0(x j ) terms ( j = ±)
of Eq. (4) to ψ0(x j , γ, c).

Then we follow the straightforward algebraic path detailed in Eqs. (4–5) in
order to return to the original coordinates and arrive at the new probability den-
sity n0(x, ω̃1, ω̃2), where ω̃k ≡ ωk

√
1 − (cγ /ωk)2 and k = 1, 2. We stress that

the Schrödinger Hamiltonian is not separable in the original coordinates. This fact is
reflected in finite values of an entropy calculated from occupation numbers of natural
orbitals. The occupation number is unity only if the system is noninteracting � = 0,
or the ground-state function is approximated via an independent-particle model, i.e.,
by products of states in the x1 and x2 variables.

At the end of the algebraic path we obtain the corresponding new probability density
with new occupation numbers Pm(ξ) = (1−ξ)ξm . The effect ofγ , which characterizes
the strength of the nonlinear [4,5] Hermitian potential operator, is encoded in

ξ(�, γ ) =
[√

ω̃1 − √
ω̃2√

ω̃1 + √
ω̃2

]2

. (7)

The deviation of ξ(�, γ ) from ξ0(�), as a function of γ , is responsible for the entropy-
change at finite coupling� �= 0. The new entropy S(ξ), to be compared with Eq. (6),
becomes

S(�, γ ) = − ln(1 − ξ) − ξ

1 − ξ
ln ξ. (8)

Motivated by the distinguished [2] role of the center-of-mass coordinate in the mean-
field TD-DFT, first we analyze the case of ω̃2 = ω2. This means that we neglect any
change in that normal mode which depends on the relative coordinate. In this restricted
situation ξ can vanish for repulsive coupling, where� ∈ [0, 0.5], if 2� = (cγ /ω1)

2.
This would result in S(ξ) = 0. In the attractive case, where� < 0, no such condition
exists. The possibility of duality, which appears [10,11] at unique pairs of attractive
and repulsive couplings, disappears when cγ �= 0. The ξ parameter may tend to unity
at � → 0.5, or at (cγ /ω1) → 1, i.e., at the critical limits (separately) for coupling
or damping. In these (separate) situations the entropy S(ξ) would tend to infinity
logarithmically. Since (ξ/ξ0) ≤ 1, independently of the sign of�, one may be tempted
to conclude that an information-theoretic measure S(ξ) of a repulsively interacting
two-particle subsystem could be non-monotonic, at fixed and allowed interparticle
coupling �, as a function of cγ .

After the above analysis on the restricted situation, we turn to the case without
restriction in Eq. (7), i.e., we allow changes in both normal modes. In this case,
without loss of generality we consider weak damping, i.e., we take cγ small enough.
Taylor’s expansion results in

ξ(�, γ ) = ξ0(�)

[
1 + 1

ω1 ω2

ω1 + ω2√
ω1 ω2

(c γ )2
]
. (9)
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Since ξ(�, γ ) ≥ ξ0(�) for arbitrary (allowed) values of the repulsive or attractive
interparticle coupling if cγ �= 0, the corresponding entropic measures show that
S(ξ) ≥ S(ξ0). This is an expected behavior considering the influence of damping
on top of a correlated initial state. If this character turns out to be in harmony with
further physical arguments, then one may conclude that consideration of all normal
modes is required. Clearly, such a conclusion may put constraints on a restricted (see,
above) model, where only the center-of-mass coordinate is considered. Without a
priori reasons one cannot neglect the relative coordinate.

Finally, we discuss briefly the motivaton for the choice of a parameter c needed
in nonlinear potential constructions [4,5]. As was pointed out by Hasse for a single-
mode, with c = 1/2 one gets the same damped quantum frequency as in the classical
limit. Our present result, summarized in Eq. (9), is not in contradiction even with a
finite c(t) value suggested by Albrecht, since the change in entropy it causes seems
to be physically realistic. No such clear conclusion can be obtained, however, with a
model restricted by the neglect of an equally important degree of freedom.

3 Summary and outlook

In this work we have analyzed an information-theoretic measure, the von Neumann
entropy, of an interacting two-particle quantum system with quantum friction. The
analysis has been performed in a parameter-space which appears to characterize the
construction [4,5] of a non-linear Hermitian potential term to be added to a basic model
Hamiltonian which constitutes a cornerstone in a large variety of fields in physics.
Considering the fact that even the classical mechanics of nonconservative systems
requires generalizing standard tools, such as Hamilton’s stationary action principle
[15], further efforts are needed in the more complex field of quantized friction in
open quantum systems. The results obtained in this note on the interplay of interaction
and damping may have relevance in the promising field of dissipative state-preparation
[16], where the main goal is the preparation of a desired stationary state by engineering
the coupling of a sub-system to its environment.

We finish this short note by commenting on the possibility of a mapping via
which our present analysis could find an immediate application. It has been suggested
recently [17] that under certain restrictions a quadratic Hamiltonian, such as the one
in Eq. (3), could replace another one with a different inter-particle interaction. For
instance, we can use a prescribed equivalence of ground-state energies of the present
and of another well-known model [18], also with harmonic external confinement, by
applying the mapping

λ

(x1 − x2)2

−→ �ω2

0

2
(x1 − x2)

2. (10)

From the energy-equivalence condition (ω0/2)(1 + √
1 − 2�) = (ω0/2)(1 +√

1 − 4λ)we getλ = �/2. This interrelation can be used, at least from an information-
theoretic [19] point of view, to analyze that entangled system which maps onto our
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quadratic Hamiltonian. With� = 0.5, we get λ = 1/4 for its critical value, consistent
with what is already known [20].

Acknowledgments The authors thank Professor P. M. Echenique for warm hospitality at the DIPC. One
of us (I.N.) acknowledges useful conversations with Professor I. V. Tokatly. This work has been supported
in part by the Basque Departamento de Educación, Universidades e Investigación, the University of the
Basque Country UPV/EHU (Grant No. IT-366-07).

References

1. D. Schuch, Phys. Rev. A 55, 935 (1997)
2. I.V. Tokatly, Phys. Rev. Lett. 110, 233001 (2013)
3. A. Bulgac, M.M. Forbes, K.J. Roche, G. Wlazlowski, arXiv:1305.6891v1 (nucl-th)
4. K. Albrecht, Phys. Lett. 56B, 127 (1975)
5. R.W. Hasse, J. Math. Phys. 16, 2005 (1975)
6. P. Caldirola, Nuovo Cimento 18, 393 (1941)
7. E. Kanai, Prog. Theor. Phys. 3, 440 (1948)
8. W. Heisenberg, Z. Phys. 38, 411 (1926)
9. M. Moshinsky, Am. J. Phys. 36, 52 (1968)

10. M.L. Glasser, I. Nagy, Phys. Lett. A 377, 2317 (2013)
11. Ch. Schilling, Phys. Rev. A 88, 042105 (2013)
12. A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953)
13. A. Polkovnikov, Ann. Phys. (N.Y.) 326, 486 (2011)
14. I. Nagy, I. Aldazabal, A. Rubio, Phys. Rev. A 86, 022512 (2012)
15. C.R. Galley, Phys. Rev. Lett. 110, 174301 (2013)
16. S. Sauer, C. Gneiting, A. Buchleitner, Phys. Rev. A 89, 022327 (2014)
17. C.R. McDonald, G. Orlando, J.W. Abraham, D. Hochstuhl, M. Bonitz, T. Brabec, Phys. Rev. Lett. 111,

256801 (2013)
18. R. Crandall, R. Whitnell, R. Bettega, Am. J. Phys. 52, 438 (1984)
19. P. Koscik, Phys. Lett. A 379, 293 (2015)
20. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1965)

123

http://arxiv.org/abs/1305.6891

	Information-theoretic aspects of friction in the quantum mechanics of an interacting two-electron harmonic atom
	Abstract
	1 Motivation
	2 Characterization of the entropy
	3 Summary and outlook
	Acknowledgments
	References


